Lossless Compression Schemes for ECG Signals Using Neural Network Predictors
نویسندگان
چکیده
This paper presents lossless compression schemes for ECG signals based on neural network predictors and entropy encoders. Decorrelation is achieved by nonlinear prediction in the first stage and encoding of the residues is done by using lossless entropy encoders in the second stage. Different types of lossless encoders, such as Huffman, arithmetic, and runlength encoders, are used. The performances of the proposed neural network predictor-based compression schemes are evaluated using standard distortion and compression efficiency measures. Selected records from MIT-BIH arrhythmia database are used for performance evaluation. The proposed compression schemes are compared with linear predictor-based compression schemes and it is shown that about 11% improvement in compression efficiency can be achieved for neural network predictor-based schemes with the same quality and similar setup. They are also compared with other known ECG compression methods and the experimental results show that superior performances in terms of the distortion parameters of the reconstructed signals can be achieved with the proposed schemes.
منابع مشابه
Quality-on-Demand Compression of EEG Signals for Telemedicine Applications Using Neural Network Predictors
A telemedicine system using communication and information technology to deliver medical signals such as ECG, EEG for long distance medical services has become reality. In either the urgent treatment or ordinary healthcare, it is necessary to compress these signals for the efficient use of bandwidth. This paper discusses a quality on demand compression of EEG signals using neural network predict...
متن کاملA High-Performance Lossless Compression Scheme for EEG Signals Using Wavelet Transform and Neural Network Predictors
Developments of new classes of efficient compression algorithms, software systems, and hardware for data intensive applications in today's digital health care systems provide timely and meaningful solutions in response to exponentially growing patient information data complexity and associated analysis requirements. Of the different 1D medical signals, electroencephalography (EEG) data is of gr...
متن کاملECG data compression using a neural network model based on multi-objective optimization
Electrocardiogram (ECG) data analysis is of great significance to the diagnosis of cardiovascular disease. ECG compression should be processed in real time, and the data should be based on lossless compression and have high predictability. In terms of the real time aspect, short-time Fourier transformation is applied to the processing of signal wave for reducing computational time. For the loss...
متن کاملApplication of Generalised Regression Neural Networks in Lossless Data Compression
Neural networks are a popular technology that exploits massive parallelism and distributed storage and processing for speed and error tolerance. Most neural networks tend to rely on linear, step or sigmoidal activation functions for decision making. The generalised regression neural network (GRNN) is a radial basis network (RBN) which uses the Gaussian activation function in its processing elem...
متن کاملLossless Microarray Image Compression by Hardware Array Compactor
Microarray technology is a new and powerful tool for concurrent monitoring of large number of genes expressions. Each microarray experiment produces hundreds of images. Each digital image requires a large storage space. Hence, real-time processing of these images and transmission of them necessitates efficient and custom-made lossless compression schemes. In this paper, we offer a new archi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2007 شماره
صفحات -
تاریخ انتشار 2007